
Verified Rewriting of MFOTL Formulas

Dawit Tirore

January 2020

Contents

1 Introduction 2
1.1 Metric First Order Temporal Logic 3

2 Soundness of Equivalences 7
2.1 Overview . 7
2.2 Strictness of Temporal Operators 8
2.3 Unsound Equivalences and Their Corrections 10
2.4 De Bruijn Indices and Existential Variables 11
2.5 Proving Equivalences Using Dual Temporal Operators 13

3 Implementing the Rewrite Function 15
3.1 The Propagate Condition . 15
3.2 Embedings and Projections . 16
3.3 Reordering Subformulas . 18

4 Correctness of the Rewrite Function 18
4.1 Termination . 19
4.2 Substitution Contexts . 20

5 Conclusion 23

1

1 Introduction

Runtime monitoring is a technique to verify properties about the execution of
a program. This is useful in scenarios where there is a low tolerance for errors.
Runtime monitoring works by setting up a monitor that continuously receives
inputs from the monitored application. The monitor is configured to evaluate
this stream of inputs, also called a trace, against a policy written in a policy
specification language. If the monitored application was an HTTP-server, the
policy might specify the following: If a request event is observed, a response
event must be observed within 1 second.

Metric first-order temporal logic (MFOTL) is one such example of a policy
specification language. It is based on the first-order-logic, which it extends with
future and past temporal operators that reference either forward or backward
in the trace relative to the current index. Additionally, all indices in the trace
are annotated with a time-stamp, allowing one to specify time-windows. From
now on we will refer to a policy as a formula, since MFOTL policies are logical
formulas. Basin et al. [1] describe an efficient monitoring algorithm which has
been implemented in the monitoring tool MonPoly [2] which can monitor a frag-
ment of MFOTL. Scneider et al. [3] formally verified this monitoring algorithm
(called VeriMon) using the Isabelle proof-assistant. Isabelle is an interactive
theorem-prover, mechanically checking human written proofs while assisting
the user in constructing these proofs. All inferences must pass through a small
well understood trusted kernel, providing the highest level of trustworthiness.
VeriMon has been integrated into MonPoly, replacing an unverified implemen-
tation of the monitoring algorithm. Even though the core monitoring algorithm
of MonPoly has been verified, the tool still relies on some unverified procedures
such as the rewriting of formulas. The rewriting of formulas is necessary be-
cause VeriMon monitors formulas efficiently by using finite tables. Storing the
intermediate results of evaluated sub-formulas with finite tables does however
inherit the problem of domain independence also seen in relational calculus [4].
To see the problem, consider the formula below where R,P and Q are finite
relations:

R(x, y) ∧ (¬P (x) ∨Q(y))

The formula as a whole is only satisfied for a finite set of assignments for both
x and y and is therefore called domain independent, as the assignments depend
on R and not the domain x and y is defined over. On the other hand, the right
conjunct does not restrict either of the variables to values present in the tables
P and Q and is therefore domain dependent. Domain dependence is therefore a
problem when one is dealing with finite tables. Although the example formula as
a whole is domain independent, it can not be monitored directly by MonPoly’s
monitoring algorithm because it contains a domain dependent sub-formula. It
is undecidable whether a formula is domain independent but a decidable subset
of the domain independent formulas can be defined syntactically. These formu-
las are called range restricted. In addition to being domain independent, the

2

formula above is also range restricted. Evident by this example formula, a range
restricted formula can contain a domain dependent sub-formula if its variables
are restricted in other parts of the formula. Only a subset of the range restricted
formulas can be monitored and these are the safe formulas. A safe formula can
be evaluated in a bottom-up manner with finite tables because intermediate re-
sults are ensured to be finite. Although this is not the case for a range restricted
formula, some range restricted formulas can become safe formulas by rewriting
them. The range restricted formula above becomes safe if R(x, y) is distributed:

(R(x, y) ∧ ¬P (x)) ∨ (R(x, y) ∧Q(y))

The goal of rewriting formulas is to maximize the number of range restricted
formulas that can be rewritten to safe formulas. MonPoly currently performs
rewriting with an unverified rewrite function. The goal in this project is to
implement and verify a rewrite function in Isabelle, using the unverified rewrite
function as a starting point. The rewrite rules that the unverified function
implements are based on equivalences from the doctoral thesis Theory and ap-
plications of runtime monitoring metric first-order temporal logic [5]. From
now on this will simply be referred to as Müller’s thesis. The equivalences from
Müller’s thesis have not been verified. This project therefore also includes their
formal verification in Isabelle.

Eight equivalences were found to be unsound, some of which are directly used in
the current unverified rewrite function of MonPoly. The source of the unsound-
ness is the same for the eight equivalences and they share the same solution.
This will be addressed in Section 2. The structure of the report is the follow-
ing. This introduction will continue into a subsection showing the syntax and
semantics of MFOTL and will end with a precise definition of range restriction.
Section 2 will show the equivalences that the rewrite function is based on and
describe relevant aspects of how they were verified. Section 3 will describe im-
plementation details of the rewrite function and Section 4 will go through the
main challenges in proving its correctness.

1.1 Metric First Order Temporal Logic

Below the syntax and semantics of MFOTL is given. The paragraphs Syntax
and Definition 2.4.16 are taken literally from Müller’s Thesis. The definition
number is provided as it appears in the thesis.
In the paragraph Syntax, C is a set of constant symbols, R a set of relation
symbols and a is an arity function defined over the relation symbols. In the
paragraph Definition 2.4.16, the interval set I is defined as [a, b] ∈ I if a ∈ N,
b ∈ N ∪∞ and a ≤ b.

Syntax Let S = (C,R, a) be a signature and V denote a countably infinite
set of variables, where we assume V ∩R = ∅ and V ∩ C = ∅.

3

Definition 2.4.16 The (MFOTL) formulas over S are inductively defined.
(i) For t,′ t ∈ V ∪ C, (t ≈ t′)and (t ≺ t′) are formulas.
(ii) For r ∈ R and t1, ..., ta(r) ∈ V ∪ C, r(t1, ..., ta(r)) is a formula.
(iii) For x ∈ V if φ1 and φ2 are formulas then (¬φ1), (φ1 ∧ φ2) and ∃x. φ1 are
formulas.
(iv) For I ∈ I, if φ1 and φ2 are formulas then Iφ1 and Iφ1, φ1SI φ2 and
φ1UIφ2 are formulas.

Additionally for the formula φ1U[a,b]φ2, the interval [a, b] is required to be future
bound so it must hold that b ∈ N (i.e. b cannot be ∞).

Satisfiability The satisfiability of a formula is defined by the sat predicate
seen on Figure 1. The sat predicate is defined in the Formula theory, which is
part of the Isabelle entry MFODL Monitor Optimized which in turn is part of
the Archive of Formal Proofs, an Isabelle proof library. A theory in Isabelle
is equivalent to a module in most programming languages and an entry is a
collection of theories. Looking at the definition of the sat predicate, the type
of σ is trace, which is a tuple of two infinite sequences, the first being an in-
finite sequence of sets of events (accessed by Γ σ) and the second being an
infinite sequence of timestamps (accessed by τσ). The sat predicate is defined
for MFOTL extended with aggregation, let-bindings and regular expressions.
These extensions will generally be glanced over in this report as no equivalence
uses them. V should be ignored as it is related to the semantics of let-bindings.
The type of v is env, which is a list of event data and it is used as a partial
function on the variables. The syntax in 2.4.16 is mapped to the sat predicate
by (i) referring to the cases where the top-constructor of a formula is Eq, Less
or LessEq. (ii) refers to Pred. (iii) refers to Neg, And and Exists. (iv) refers to
Prev, Next, Since and Until.

4

Figure 1: Sat predicate

Abbreviations Some relevant abbreviations given in Müller’s thesis are:

(3Iφ) := (true UI φ)

(�Iφ) := (true SI φ)

(�Iφ) := (¬(3I(¬φ))

(�Iφ) := (¬(�I(¬φ))

βRIγ := ¬(¬βUI ¬γ)

βTIγ := ¬(¬βSI ¬γ)

Intuitively αUIβ means that α is satisfied now and at all future indices until β
is satisfied where as αSIβ means that β is satisfied at some index in the past
and α is satisfied for all succeding indices up until and including the current
index.

5

The abbreviation (3Iφ), means ”sometime in the future”, while (�Iφ) means
”sometime in the past”. On the other hand (�Iφ) means ”at all times in the
future” and similarly for (�Iφ) ”at all times in the past”.
The operators R (Release) and T (Trigger) will be referred to as dual temporal
operators, as they can be seen as the duals of U (Until) and S (Since).

Strictness In Müller’s thesis a strict version of all temporal operators (in-
cluding those that are abbreviations) is derived by replacing S and U with Ṡ
and U̇ , whose semantics differ by the latter having strict inequalities between
indices i and j. Intuitively strictness enforces the left operand of the temporal
operator to be satisfied for a sequence of indices.

Range restriction The set of range restricted variables in a formula α is
RR(α), defined in Figure 2 where x, x′ range over V and c over C.

Figure 2: Definition of Range Restriction. The figure is taken from Müller’s
thesis.

6

2 Soundness of Equivalences

In this section, a set of equivalences originally presented in Müller’s thesis, will
be shown. These are later used in proving the correctness of the rewrite function.
Some of the equivalences are unsound, in which case the corrections also will be
shown. Some of the equivalences presented in Müller’s thesis use a strict variant
of the (dual) temporal operators, which have not been defined in the Formula
theory. Strictness has in this project been enforced in another way which will be
described. The Formula theory also represents variables with De Bruijn indices
and the consequence of this in proving equivalences will also be shown. The
section will end with a walk-through of the proof for an equivalence involving a
dual temporal operator.

2.1 Overview

We divide the equivalences that have been proved into two sets. The first set
is called the auxiliary equivalences and can be seen in Figure 3. This set is
not directly used in the rewrite function but shows how operands of temporal
operators can be distributed from left to right and right to left. Moreover it
shows how to push a conjunct inside the arguments of a temporal operator.

Figure 3: Auxiliary equivalences

The main equivalences which are directly used as rewrite rules can be seen in
Figure 4. From now on, rather than writing for example second auxiliary equiv-
alence and third main equivalence, I will instead write AE2 and ME3. For each
of the auxiliary equivalences, there is a related main equivalence. Some equiva-
lences such as AE6 and ME11 are the same.1 Other equivalences such as AE1
and ME7 differ only because the latter requires an argument of the temporal
operator to be a conjunction. The reason for requiring an argument to be a con-
junction is heuristical and will be explained in Section 3. Finally, since strict

1AE6 and ME11 are the same equivalence after conjunction in the left temporal operator
of ME11 has been commuted.

7

operators are not used, rule 13 through 17 duplicates rule 18 through 21.

Figure 4: Main equivalences. Taken from Müller’s thesis, where 7→ is used rather
than ≡ because they are presented as rewrite rules.

2.2 Strictness of Temporal Operators

All unsound equivalences use strict temporal operators. The Formula theory,
which defines the syntax and semantics of MFOTL only contains the non-strict
temporal operators. Therefore, before the unsoundness of the incorrect equiv-
alences can be shown, their non-strict representations in Isabelle must be ad-

8

dressed.

Most of the equivalences that use strict temporal operators, remain sound when
strictness is dropped and in this case the strict operator is simply replaced by
its non-strict counterpart. The arguments of temporal operators will also be
referred to as temporal operands. The remaining equivalences where dropping
strictness would be unsound are those that distribute temporal operands from
left to right. One example is αU̇Iβ ≡ αU̇I(�Iα ∧ β) which is only sound in the
strict case. Intuitively this is because, strictness forces α to be satisfied at some
index within the interval. An analogy can be drawn to regular expressions,
where αU̇Iβ is similar to α+ β and αUIβ is similar to α∗ β. It is therefore only
in the strict case where α is guaranteed to have been satisfied before β within
the interval I.
For these kinds of equivalences, strictness is enforced by assuming 0 is not in the
interval I. Intuitively this means that time has increased between the current
index and the time where β is satisfied. Stated more formally, the timestamps
in τ is a monotonically increasing sequence. Therefore for positions i, j where
i ≤ j, if τj − τi 6= 0, then i < j. It can be noted that requiring time to have
increased, is more strict than requiring i < j, because τ is not necessarily strictly
increasing. Figure 5 shows a small Isabelle proof, showing that when assuming
I excludes 0, the non-strict Until operator and the strict one are equivalent.
Here mem is the membership function on intervals.

Figure 5: Simulating strictness in Isabelle

The excl zero I assumption is used in AE1, AE3, ME6 and ME7. As an example
AE1 is shown in Figure 6.

Figure 6: Representing AE1 in Isabelle

9

2.3 Unsound Equivalences and Their Corrections

The unsound equivalences are AE2, AE4, ME2, ME3 and ME8-ME11. The
unsoundness stems from either distributing temporal operands from right to
left or pushing a conjunct into a left temporal operand. The first reason is
exemplified by AE4: αSIβ ≡ (α∧�β)SIβ and the second reason is exemplified
by ME10: α ∧ (βSIγ) ≡ α ∧ ((3Iα ∧ β)SIγ).2 To see why they are unsound,
consider the left-hand-side of ME10 where α = S(y), β = ¬P (y) ∧ Q(x), γ =
R(x, y) and I = [10, 12].

φ := S(y) ∧ ((¬P (y)) ∧Q(x))S[10,12]R(x, y))

And the sequence of time stamps and sets of events

@0 R(1,2)

@8 Q(1)

@10 S(2) Q(1)

@20

Using zero-based indexing to refer to a line, the n-th line contains the n-th
timestamp followed by the n-th set of events. By evaluating φ at index 2 where
τ2 = 10, the left conjunct is satisfied by y = 2. The right conjunct is also
satisfied at index 2 by x = 1 and y = 2. This is because the right temporal
operator is satisfied at index 0, the left temporal operator is satisfied at both
index 1 and 2 and τ3 − τ0 = 10 is in the interval [10, 12].

Now consider the right-hand-side of the equivalence

ψ := S(y) ∧ ((3[10,12]S(y) ∧ (¬P (y) ∧Q(x)))S[10,12]R(x, y))

For ψ to be satisfied at index 2, (3[10,12]Sy ∧ (¬Py ∧Qx)) must be satisfied at
indices 1 and 2, but it is satisfied at neither of the indices. This is because only
index 3 is in the interval of 3[10,12]S(y) and since index 3 contains no events, it
does not satisfy S(y). To solve this problem we must replace the lower bound of
the interval by 0. The corrected ME10 proved in Isabelle can be seen in Figure
7. Here diamond w is 3 and init int([a, b]) = [0, b].

2These two equivalences have been written non-strictly, because strictness can be dropped
if temporal operands are not distributed left to right, as described in Section 2.2

10

Figure 7: Proof of corrected ME10

α ∧ (βSIγ) ≡ α ∧ ((3init int(I)α ∧ β)SIγ)

Note the use of an additional lemma nat less mem of init in Figure 7, near
the bottom. This lemma is used in all the corrected equivalences. Its definition
and proof can be seen on Figure 8.

Figure 8: Lemma capturing why the corrected lemma is sound

The lemma states that if τj−τi ∈ I then ∀k, k′ ∈ [i, j]. τk−τk′ ∈ init int(I). This
is clearly not the case if init int(I) is replaced by I. Proving nat less mem of init

relies on the fact that k, k′ ∈ [i, j] =⇒ k − k′ ≤ j − i. By the monotone
property of time stamps, this is lifted to τk − τk′ ≤ τj − τi. The lemma fur-
ther relies on the intuitive fact that for a natural number n, if n ∈ I, then
∀n′ ≤ n. n′ ∈ init int(I). These two facts combined is enough to prove the
lemma.

2.4 De Bruijn Indices and Existential Variables

Another source of unsoundness in the main equivalences is ME4 which does not
ensure capture avoidance. To ensure capture avoidance, it should be formulated

11

as x /∈ fv(α) =⇒ α ∧ ∃x.β ≡ α ∧ ∃x (α ∧ β). The Formula theory represents
MFOTL variables with De Bruijn indices, which makes the proof significantly
more challenging. De Bruijn indices is a way to represent variables used for
example in lambda calculus that avoids the naming of variables. A binder is a
term that introduces a bound variable, such as lambda abstraction or existential
quantification. A De Bruijn index represents a variable occurrence by a natural
number indicating the number of binders that were introduced between this
variable occurrence and its own binder. In MFOTL both aggregations and the
existential quantifier is a binder, but we shall focus on the existential quantifier.
Take an example with two existential variables and a free variable, ∃∃P (0, 1, 2).
Here 0 is bound to the inner-most quantifer, 1 is bound to the other and 2 is a
free variable because the index is too large to refer to a binder inside its scope.
Remembering the event-data list in the sat predicate, it is because variables
are represented as De Bruijn indices, that their mapping to event-data can be
represented by a list.

It is known that x /∈ fv(α) =⇒ α ≡ ∃x.α. When using De Bruijn indices
however, all the free variables must be incremented to ensure capture avoid-
ance. Related to this is that the unverified rewrite function, although not using
De Bruijn indices, has suffered the error of applying this equivalence without
ensuring capture-avoidance, resulting in unsoundness. Incrementing the free
variables in a formula, i.e. shifting the formula, is implemented in Isabelle by
the function shiftI :: nat→ formula→ formula, where the first argument is
the number of binders in scope. To illustrate its definition, the case for Exists
is shown in Figure 9.

Figure 9: Excerpt of the shift function, incrementing the free variables in a
formula. (Top) The case where a term is a variable. (Bottom) The Exists and
Pred case where r is a relation and ts is a list of terms.

To prove the corrected ME4, a separate lemma is needed which addresses the
satisfiability of a shifted formula. Naturally, if the free variables of a formula
are shifted, the event-data list that contains their mappings must be shifted as
well. Shifting the list is achieved by prefixing it with an arbitrary value z. The
equivalence is seen by the lemma in Figure 10. Here the lemma is defined for
when the first argument of shiftI is 0. sat shift is a generalized lemma where
the first argument may be any arbitrary natural number. sat shift was stated
in this general form to allow the proof to be by induction over the formulas.
The proof of sat shift z is simply an instantiation of sat shift.

12

Figure 10: Equivalence between a formula and the shifted formula

The proof of ME4 instantiates sat shift the same way. This can be seen in
Figure 11.

Figure 11: Proof for ME4

2.5 Proving Equivalences Using Dual Temporal Operators

Some of the more complicated equivalences to prove were ME2 and ME3 involv-
ing the dual temporal operators. To see why, compare the semantics of Until
with Release in Figure 12.

Figure 12: Semantics of Until (Top) and dual semantics of Until (Bottom)

Here release is the definition of R. Comparing the two, the semantics of Until
has an existentially bound quantifier and a sub-expression consisting of three
conjuncts. The dual semantics of Release on the other hand has a universally
bound quantifier and a sub-formula of three disjuncts.

Proving equivalences where the right-hand-side consists of conjuncts is easier
to prove in both directions. From left to right, each conjunct can be derived
individually. From right to left, each conjunct becomes a separate assumption.
For disjuncts on the other hand, one must consider all the cases that would
satisfy them. To see this, a walkthrough for the proof of ME2 is now given.

13

Proving ME2 The lemma to show is stated below. The last line abbreviates
the left-hand-side by the schematic variable ?L and right-hand-side by ?R.

The first rule to apply is iff-introduction, stating that showing an equivalence,
reduces to showing ?L =⇒ ?R and ?R =⇒ ?L. This is seen by the first line in
the image below. ?R =⇒ ?L trivially holds, so we proceed to prove ?L =⇒ ?R
by now assuming ?L. We simplify this assumption into a list of two facts, which
we name split A. In the second fact,

∧
j. introduces j as a fixed but arbitrary

natural number, within the scope of the binder. To easily refer to the second
fact of split A it will be abbreviated here in the report as

∧
j. j ≥ i =⇒ a∨b∨c.

From these two facts, we now want to derive that α can be propagated into
both operands of Release. This is seen below by stating an intermediate lemma,
similar to the second fact in split A, except that the second and third disjunct
now include the distributed α. Again for reference, this will here in the report
be abbreviated as

∧
j. j ≥ i =⇒ a ∨ (b ∧ b′) ∨ (c ∧ c′)

We show
∧
j. j ≥ i =⇒ a ∨ (b ∧ b′) ∨ (c ∧ c′) by creating a new proof context,

seen by the first line in the image below. In this proof context we fix j to an ar-
bitrary value greater or equal to i. In this proof context

∧
j. j ≥ i =⇒ a∨ b∨ c

yields a ∨ b ∨ c.

We now state three cases, preparing us for a proof of the main lemma
∧
j. j ≥

i =⇒ a ∨ (b ∧ b′) ∨ (c ∧ c′) by cases. Again, in the current proof context∧
j. j ≥ i =⇒ a ∨ (b ∧ b′) ∨ (c ∧ c′) yields a ∨ (b ∧ b′) ∨ (c ∧ c′). Intuitively

14

there is a case for when each of the disjuncts are true. For case (b) and (c) we
additionally need the interval membership of τj − τi.

The proof is over the cases (a), (b) and (c) and each case is simple to prove.
Note that (c) needs to appeal to nat less mem of init because of init int(I).

This proves ?L =⇒ ?R and as mentioned, ?R =⇒ ?L trivially holds, so Isabelle
proves this directly. With both implications shown, the equivalence has been
proved.

3 Implementing the Rewrite Function

This section addresses two essential concerns about the implementation of the
rewrite function. These are: When rewrite rules should be applied and how
they can be implemented in an Isabelle-friendly way.

3.1 The Propagate Condition

The purpose of the rewrite function is to enlarge the set of safe formulas by
propagating range restrictions heuristically. The heuristics are guided by a

15

propagate condition related to each main equivalence, introduced in Müller’s
thesis, which pushes α into β if there is a range restricted variable x in α (i.e.
x ∈ RR(α)) which is free but not range-restricted in β (i.e. x ∈ FV (β)\RR(β)).
In Müller’s thesis the sub-formulas in the main equivalences have been named
intentionally such that it is assumed that α contains the range restricted x,
which is unrestricted in β. For the equivalences where the distributed α is part
of a conjunction, our rewrite function additionally tries to distribute the other
conjunct if the propagate condition fails for α. This can be seen in Figure 13
on the next page. This explains why some of the main equivalences are nearly
identical to some of the auxiliary equivalences except for the former requiring
an argument of a temporal operator to be a conjunction. The benefit is that
if one of the conjuncts contain a range restriction, only a conjunct and not an
entire conjunction needs to be pushed into β. It avoids unnecessarily bloat-
ing up a formula. Its drawback is that there are cases where it would be useful
to apply the less restrictive rewrites as they appear in the auxiliary equivalences.

The propagate condition for ME1 differs from the remaining propagate con-
ditions. The original propagate condition was prop cond α β, which in this
project was improved to prop cond α β ∨ prop cond α γ. To see their difference
consider instantiating the left-hand-side of ME1 to R(x, y) ∧ (P (x) ∨ ¬Q(y)),
making α = R(x, y), β = P (x) and γ = ¬Q(y). The original propagate condi-
tion prop cond α β would not trigger as β is already range restricted. However
the improved propagate condition prop cond α β ∨ prop cond α γ would trigger
as y is not range restricted in γ. A further improvement that could have been
made on this propagate condition was discussed with the project advisors but
was not been implemented due to time constraints. This improvement was the
propagate condition prop cond α (β ∨ γ). To see why this is the most useful
propagate condition of the three, consider instansiating the left-hand-side of
ME1 to R(x, y) ∧ (P (x) ∨Q(y)), making α = R(x, y), β = P (x) and γ = Q(y).
Only the propagate condition prop cond α (β ∨ γ) would trigger the rewrite
as it correctly considers the intersection of the range restricted variables in β
and γ, whose set is empty. This is the best propagate condition of the three
because it aligns with the definition of range restriction for disjunction (i.e.
RR(β ∨ γ) = RR(β) ∩RR(γ)).

3.2 Embedings and Projections

A function in Isabelle containing overlapping pattern-match cases, is internally
parsed into an equivalent function of a larger set of non-overlapping cases. Quot-
ing an example found in the Isabelle documentation [6], consider the type P3
modeling booleans but also allowing the unknown value, represented by X.

P3 = T | F | X

Implementing conjunction for this datatype with overlapping cases could then
look like

16

And T p = p

And p T = p

And p F = F

And F p = F

And X X = X

In Isabelle this would internally be represented by the non-overlapping patterns

And T p = p

And F T = F

And X T = X

And F F = F

And X F = F

And F X = F

And X X = X

It can be seen the number of cases has increased. The rewrite function pattern
matches against the left-hand-side of the equivalences which are highly overlap-
ping when desugared and additionally contains repeating patterns which is not
allowed. Repeating patterns is fixed by handling them in the same case, but rep-
resenting highly overlapping cases in a non-overlapping way severely increases
the number of cases. This is due in part because the formula type contains 17
constructors. The many cases results in an internal representation too large to
be processed by Isabelle in reasonable time. Attempting to process the func-
tion using a laptop with with a four-core 1.60GHz CPU, resulted in Isabelle
running out of memory. One of the sources for the combinatorial explosion can
be attributed to two specific overlapping cases in particular, the first matching
the left-hand-side of ME6 and the second matching the left-hand-size of ME8.3

ME6 matches the left operand of Since to a conjunct while ME8 does the same
to the right operand. The non-overlapping representation of these two cases
requires 174 cases. Adding to this, that many of the temporal operators seen in
the main equivalences are not constructors, but abbreviations of larger formu-
las, it is clear that something must be done to limit the combinatorial explosion
of cases.

To solve this, two additional datatypes were defined, tformula and rformula
along with projection and embedding functions, allowing conversion between
the three types. The definition of tformula contains equivalent constructors for
all constructors in formula and additionally has constructors for 3,�,� and �.
rformula contains equivalent constructors for all constructors in tformula and
additionally has constructors for R and T . Embedding a formula into its corre-
sponding rformula, is then done by embedding the formula into the temporary
form of tformula and embedding this formula into an rformula. The reason a
formula is not directly embedded as an rformula, is that the patterns in the em-
bedding function would face the exact same problem of combinatorial explosion

3Using ME7 and ME9 is equally problematic

17

that one wants to avoid.

As a consequence of embedding formulas, shiftI has also been defined on the
level of rformulas as shiftI r. It was attempted to implement this function by
composing the shiftI function with the embed and project functions, but it made
some proofs more challenging.
Another consequence of embedding formulas is that satisfiability also must be
defined at the level of rformulas. This is however simply done by composing
embed and project with the sat predicate. The rformula level sat predicate is
called rsat.

Embedding formulas significantly reduces the number of cases, but it does not
address the fact that the non-overlapping representation of the left-hand-side
P6 and P8 as patterns, adds 174 cases. This problem is solved by reordering
sub-formulas, as described next.

3.3 Reordering Subformulas

For most of the main equivalences, the left-hand-side is a conjunction and as
conjunction is commutative, the equivalence would remain sound after com-
muting the conjuncts. This will more generally be referred to as reordering the
sub-formulas, the reason for which will be seen shortly. Motivated by the goal of
maximizing completeness, while avoiding to duplicate the existing conjunction
patterns in reordered form, the rewrite function takes an additional argument
besides the formula to be rewritten. This additional argument has the type
argpos containing the two constructors Same and Swapped. This serves as a
flag indicating whether the input formula should be rewritten as is or if the
sub-formulas should be reordered first. This serves two purposes. The first is to
increase completeness by allowing a formula that is a conjunction which didn’t
match any rule to be reordered before trying again. The second purpose was
to allow the left-hand-sides of ME6 and ME8 to be matched by the same case
pattern, letting the flag indicate which rule to trigger. This solves the problem
with combinatorial explosion of cases. Figure 13 shows how the rewrite func-
tion is defined for the case of ME6 and ME8. It can be seen that first ME6 is
attempted to be applied where α is propagated and if that fails, γ is attempted
to be propagated. If that fails, ME8 is attempted to be applied in a similar
fashion. The last line fix r (RSince l I R) t, reorders the sub-formulas if t
is swapped, otherwise it returns the formula as is.

4 Correctness of the Rewrite Function

Earlier, implementation details of rewrite function were adressed. In this sec-
tion, the main challenges in proving its correctness will be shown. The function
is defined recursively, but it can not be inferred by Isabelle automatically that

18

Figure 13: An excerpt of the rewrite function applying ME6 and ME8.

the arguments to the recursive calls are smaller than the input, with respect to a
measure that will be introduced shortly. Termination therefore has to be proved
manually. Another challenge is that the rewrites differ from the equivalences
from Section 2, by also containing recursive calls. It will be shown how to reduce
these rewrites to the original equivalences by using substitution contexts.

4.1 Termination

When defining functions in Isabelle, a termination proof is often not necessary as
it is proved behind the scenes automatically. In the case where Isabelle can not
prove termination automatically, the function definition must be accompanied
by a termination proof. Termination is proved in Isabelle by showing for all
cases, that the size of the arguments to a recursive call is strictly less than
the size of the input, with respect to some size measure. Isabelle provides a
generic size function, overloaded for all types. This size function is however not
used in the termination proof because it lacks two properties needed to prove
termination. The size function should be invariant to the shifting of a formula.
To see why, consider the function case implementing ME4 seen in Figure 14.
In this excerpt, recursion is guaranteed to only be applied to an argument of
smaller size if we can ensure that α has the same size as the shifted α, since the
Exists constructor has been excluded from the recursion.

Figure 14: Excerpt of rewrite function highlighting why a size function invariant
to the shifting of a formula, is needed to prove termination

The reason the generic size function is not shift invariant, is because the size of
a natural number is the number itself, making the size of a formula increase as
variables are incremented.

19

The second property that is needed of the size function, is that it is non-zero,
i.e. the smallest size a formula can have is 1. The reason why can be seen in
Figure 15. Here it can be seen that recursion is applied to α∧β and α∧γ, both
of which should be smaller than α ∧ (β ∨ γ). This is however only the case if
the size of β and γ is guaranteed to be greater than zero.

Figure 15: Excerpt of rewrite function highlighting why a size function that
never returns a value lower than 1, is needed to prove termination

A size function called my size has been implemented that satisfies these prop-
erties of being shift invariant and non-zero. To ensure non-zeroness, pattern
matching against each constructor in rformula, returns 1 plus the size of any
subformulas. To ensure shift invariance, the size function ignores all constructor
arguments that are not formulas.

Using my size as a measure on the formula argument of the rewrite function is
however not enough to prove termination. Consider the cases where a formula
has not matched any rule and its sub-formulas are reordered before attempting
rewriting again. These cases can be seen in Figure 16.

Figure 16: An excerpt of the rewrite function, reordering sub-formulas before
reattempting a rewrite.

The final touch that is needed, is to define a measure on the flag of type argpos,
assigning Same to 1 and Swapped to 0. Termination can then be showed by
using as a size measure, the lexicographical ordering of the size of the formula
and the size of the flag.

4.2 Substitution Contexts

In Section 2, the equivalences that the rewrite function is based on were proved,
but because rewriting is done recurisvely throughout the sub-formulas, more
than the equivalences alone is needed to prove correcntess of the rewrite function.
This can be seen in Figure 17, which is the rewrite rule implementing ME4.

20

Figure 18: Restriction predicate on a substitution context

Figure 19: Restricted substitution lemma

Figure 17: Applying ME4 as a rewrite rule

If the propagate condition is satisfied, it must be shown that the rewritten for-
mula is equivalent to the right-hand-side of ME4. This could be achieved by
proving a general substitution lemma that allows equivalent sub-formulas to be
substituted within a larger formula. It could be stated as (∀σ′ V ′ v′ i′. sat σ′ V ′ v′ i′ α =
sat σ′ V ′ v′ i′ β) =⇒ sat σ V v i (P α) = sat σ V v i (P β). This statement
is however not true because P is an arbitrary function, in particular it could
be a function that returned false for some formulas and true for others. The
problem with the lemma is thus the unrestrictedness of P . Allowing P to be
an arbitrary function is also a much stronger lemma than is needed. For the
example given, all that’s required is that the sub-formula of the Exists con-
structor can be substituted. P will be called a substitution-context, and it is
constrained, by defining the predicate f con :: formula → formula (short for
formula context) defining substitution-contexts by cases. Figure 18 shows all
the cases that where necessary in the correctness proof of the rewrite function.
The substitution lemma can be seen in Figure 19, which is proved by cases over
f con derivations. There is one derivation per rule.

Implications of embedding As the rewrite function uses the embedded syn-
tax, an embedded variant of the substitution lemma sub 1 had to be proved
(called rsub 1). This is done by defining the predicate f conr :: rformula →
rformula, such that f conr P constrains P to a set of rformula substitu-
tion contexts by cases. Substitution contexts on the level of rformulas are re-

21

Figure 20: Restricted substitution lemma on the level of rformulas.

lated to substitution contexts on the level of formulas by a translation relation
trans :: (rformula → rformula) → (formula → formula). To prove rsub 1,
three intermediate lemmas must be shown about this trans relation. To relate
trans to the predicates f conr and f con it must be shown that the first argu-
ment of a trans relation indeed must satisfy the f conr predicate and likewise
the second argument must satisfy the f con predicate. The next lemma that
must be shown is that trans conr con =⇒ project (conr r) = con (project r)
i.e. after instantiation and projection both contexts are equivalent. Finally it
must be shown that all rformula contexts conr that satisfy f conr conr, have a
translation to a formula context con defined in the trans relation. These three
lemmas along with sub 1 is enough to prove rsub 1 whose definition can be seen
in Figure 20.

Using the substitution contexts Returning to the rewrite rule that applies
ME4, to use the substitution lemma to reduce the recursive expression, an
equivalence is needed between rewrite (RAnd (shiftI r 0 α) β) Same and
fix r (RAnd (shiftI r 0 α) β) Same. Isabelle functions defined with the
”function” keyword whose termination has been proved, provides an induction
scheme called computation induction, where induction follows the computation.
The exact equivalence that is needed is therefore available as an assumption
when proving this case.

Other substitution contexts Two additional kinds of substitution contexts
are used. For convenience, a substitution lemma for contexts expecting two
input formulas, is also given. By necessity a separate substitution lemma is
given for the aggregation context. A separate aggregation context is necessary,
because the sub-formula that is aggregated over, must be more than just equiv-
alent in terms of satisfiability to its replacement, they must also share the same
free variables. Equivalence in terms of satisfiability does not imply that formu-
las share the same variables.
The proof for the aggregation substitution lemma is exactly the same as we have
seen, but the aggregation substitution lemma not only assumes an equivalence
between the substituted and replaced formula, it also assumes that their free
variables coincide. The equivalence the substitution is based on is of the form
sat σ V v i (rewrite α) = sat σ V v i α.4 To then show that the free variables
coincide, a separate lemma was proved which showed fv (rewrite α) = fv α.

4The argpos argument of the rewrite function is omitted for simplicity.

22

5 Conclusion

In this report, the value in formally verifying a procedure used in runtime mon-
itoring tools such as MonPoly was shown. The core monitoring algorithm of
MonPoly, called VeriMon, has been formally verified but other procedures used
in MonPoly remain unverified such as formula rewriting. In this project the
motivation behind the rewriting of formulas, namely to tackle the problem of
domain independence, was described and a formally verified rewrite function was
implemented in Isabelle. The unverified rewriting procedure currently imple-
mented in MonPoly is based on several equivalences which in this project were
shown to be unsound. A source of the unsoundness was due to an incorrect
lower-bound of the interval I in 3I and �I . The solution to this problem was
described as well. The other source of unsoundness was moving a sub-formula
under an existential quantifier without ensuring capture-avoidance. The chal-
lenges in proving equivalences when the De Bruijn indices of variables must be
shifted in a capture-avoiding way was described. It was also shown how strict-
ness of temporal operators has been enforced without the presence of strict
temporal operators in the syntax of formulas.

Implementation details about the rewrite function were seen and they included
considerations on when to apply rewrite rules. The greatest implementation
challenge was however representing the pattern-match cases in an Isabelle-
friendly way. This meant that overlapping patterns were implemented sparingly
to avoid a combinatorial explosion in the number of cases of Isabelle’s internal
representation of the rewrite function.

Finally relevant aspects of the correctness of the rewrite function itself were
shown. This included how to prove termination by defining a size measure that
satisfied the properties of decreasing for all recursive calls. It also included the
use of substitution contexts to simplify expressions by removing recursive calls
to the rewrite function.

As future work it would be interesting to prove some lemmas about range re-
striction. The purpose of the rewrite function is to propagate range restriction
and since the functions most important property of preserving satisfiability has
been shown, it would be interesting to show other properties related to range
restriction.
The equivalences that have been proved in this project were originally defined
in a section of Müller’s thesis where he defines a larger procedure in which
rewriting is just one step. Another step that happens earlier in this procedure
involves pushing negations in formulas inwards and unverified rewrite rules for
accomplishing this are given. Future work could also include the verification of
these rewrite rules.
The auxiliary equivalences are called auxiliary because they were not used di-
rectly in the rewrite function, but they could have been added. This would also

23

be a meaningful addition as it would allow more formulas to be rewritten to
safe formulas.
Finally in Section 3.1 it was mentioned that an improvement for the propagate
condition of ME1 had been discussed with the advisors but not implemented.
Implementing this improvement would be a useful as well as a simple addition
because it has nearly no effect on the correctness proof of the rewrite function.

References

[1] D. A. Basin, F. Klaedtke, S. Müller, and E. Zalinescu, “Monitoring metric
first-order temporal properties,” J. ACM, vol. 62, no. 2, pp. 15:1–15:45,
2015.

[2] D. A. Basin, F. Klaedtke, and E. Zalinescu, “The monpoly monitoring tool,”
in RV-CuBES 2017. An International Workshop on Competitions, Usabil-
ity, Benchmarks, Evaluation, and Standardisation for Runtime Verification
Tools, September 15, 2017, Seattle, WA, USA (G. Reger and K. Havelund,
eds.), vol. 3 of Kalpa Publications in Computing, pp. 19–28, EasyChair, 2017.

[3] D. A. Basin, T. Dardinier, L. Heimes, S. Krstic, M. Raszyk, J. Schneider,
and D. Traytel, “A formally verified, optimized monitor for metric first-
order dynamic logic,” in Automated Reasoning - 10th International Joint
Conference, IJCAR 2020, Paris, France, July 1-4, 2020, Proceedings, Part
I (N. Peltier and V. Sofronie-Stokkermans, eds.), vol. 12166 of Lecture Notes
in Computer Science, pp. 432–453, Springer, 2020.

[4] A. V. Gelder and R. W. Topor, “Safety and translation of relational calculus
queries,” ACM Trans. Database Syst., vol. 16, no. 2, pp. 235–278, 1991.

[5] S. Müller, Theory and applications of runtime monitoring metric first-order
temporal logic. PhD thesis, ETH Zurich, Zürich, 2009.

[6] A. Krauss, “Defining recursive functions in isabelle/hol,” 2007.

24

	Introduction
	Metric First Order Temporal Logic

	Soundness of Equivalences
	Overview
	Strictness of Temporal Operators
	Unsound Equivalences and Their Corrections
	De Bruijn Indices and Existential Variables
	Proving Equivalences Using Dual Temporal Operators

	Implementing the Rewrite Function
	The Propagate Condition
	Embedings and Projections
	Reordering Subformulas

	Correctness of the Rewrite Function
	Termination
	Substitution Contexts

	Conclusion

